This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) in orbit high above the Earth. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for a possible RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space servi


This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) in orbit high above the Earth. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for a possible RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would improve economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hopes to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary "linear aerospike" rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the p


Size: 1704px × 1465px
Photo credit: © NASA Image Collection / Alamy / Afripics
License: Licensed
Model Released: No

Keywords: astronomy, copy, editorial, nasa, nasaimageexchangecollection, news, night, photograph, photography, rocket, sky, space, stock